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Inorganic Nitrogenous Pollutants 

 NO 

 NO2 

 N2O 

 NH3 

 … 

 chemically reactive 

 respiratory irritants / toxins  

 environmentally problematic  
low-level ozone, environmental acidification … 

 politically exploited 

Anthropogenic Sources: virtually any high-temperature 

combustion processes that relies on air as one reaction component 
industrial furnaces, heaters, all types of combustion engines … 

… and worsening, as lean combustion reduces CO2 emissions 

at the cost of increasing NOx levels  

→ reliable & fast metrology tools needed 



3 

Analytics - State of the Art vs. Demand 

 Chemi-Luminescence Detection (CLD) | NO, NO2 

 non-dispersive UV/VIS | NO, NO2 

typically using analyte-specific ED light sources 

 high-resolution FT-IR | NO, NO2, N2O, NH3 & more 
typically using long-path gas cells 

 electrochemical sensors | NOx 
commercial devices for motor / combustion control,  

lots of research going on 

 current need for … 

→ mobile devices (sensors) 

→ full & direct speciation  

→ wider / customised dynamic ranges 
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Strategic Approach I – Chemical SAW Sensors 

 fundamental concept:  

electrochemical sensor layer (metal oxide nano-layers), coupled 

to a surface-sensitive surface acoustic wave transducer for signal 

generation and transduction  

 
 integrated temperature sensing & 

compensation 

 compatible with mass-accumulating 

or catalytic layers  

 multiplexing possible 

 suitable for temperatures up to 

650°C 

 wirelessly & fully passively 

interrogable (2.4 GHz band) 
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SAW NOx Sensor 

 SAW operated in electro-acoustics mode  

 very high sensitivity to resistance changes in the 

functional layers (Au:WO3 nano-layers) 
over a limited range 

 analytical range tuneable by layer / transducer 

matching 
LoDs down to ppb range feasible 

 convenient range and/or analyte 

expansion in array form 

 evaluation of amplitude or  

phase data 
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SAW NOx Sensor - Results 

 principle works, both in the lab and in the field 

 differentiation NO / NO2 

 in-situ measurements of untreated combustion gases possible 

 cross-sensitivities remain an issue 

 response times are a little high 

 under certain conditions, exhaust gas composition can saturates the 

layers, rendering the sensor blind to analyte changes 
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Strategic Approach II – Spectroscopic Sensors 

UV/VIS 

IR 

 direct probing of analytes 

 differentiation possible 

 wide sensitivity ranges 

 cross-sensitivities easier to 

detect and compensate 

 LoD design by optics design 

 no aging / poisoning of 

layers 

 response times limited only 

by exchange time of sample 
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RT-operable QCL 

working range 

 spectral power density of QCLs up to 105 times higher than 

blackbody emitters 

 

 

 

 

 

 

 

 

 enables longer absorption pathlengths | lower LoDs | better SNR 

 narrow emission wavelengths; wavelength-tuneable options available 

 compatible with wider range of detection principles  
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Integration Approach: mid-IR QCL Devices 
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mid-IR Absorption Spectroscopy of NOx-es 
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 wealth of narrow gas absorption lines 

 non-dispersive IR sensors cannot resolve spectral overlaps, high-

resolution spectroscopy can 

 

 

 

 

 

 

 

 

→ full-range HR-FTIR      → narrow-range QCL spectroscopy
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Example: DFB-QCL NOx Sensing  

C. Reidl-Leuthner, Appl. Spectrosc. 2013 

 pulsed chirping-mode QCL operation scans across band  
Alternative: external cavity QCL with scanning mirror 
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 scanning across absorption bands enables integrated background 

compensation 

 careful wavelength selection enables highly selective, independent 

measurement of different species 

 classical “molehill on mountain” problem of absorption spectroscopy 

 QCLs are (still | very) expensive 
in particular tuneable varieties 

 rapid detectors & detector electronics required 

 sample temperatures influence the quantification 

 detection sensitivity directly dependent on interaction pathlength 
i.e. high sensitivity requires long pathlengths 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

DFB-QCL Gas Sensing  

→ option 1: tune the photonics – analyte interactions 

→ option 2: change the detection principle 
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Alternative Detection Concept: QEPAS 
(Quartz-Enhanced Photo-Acoustics) 

fA

cPQ
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S Photoacoustic signal (N/m²) 

k System constant  
microphone transfer function etc. 

α Absorption coefficient (L/(mol∙cm)) 

c Concentration (mol/L) 

P Optical power (W | kg∙m2/s3) 

Q Quality factor 

f PA sound frequency (s-1) 

A Resonator cross-section (m2) 

  detection sensitivity does not rely on long interaction pathlengths 

Photoacoustics Principle 

optimising performance: quartz tuning fork to increase quality factor Q 

 Quality factors of 104 – 105 

 reduced sensitivity towards disturbances by external acoustic sources 

 high dynamic range (~106)  

 low cost: ~ 0.30 € 
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J.P. Waclawek, Appl. Phys. B 2014 

QEPAS Gas Sensing Layout (Laboratory) 
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